We construct a universally Bayes consistent learning rule that satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact, learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labeled} sample complexity of $\tilde{O}(d/\varepsilon)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution).
translated by 谷歌翻译
当呈现新任务时,人类可以在构图上推理。先前的研究表明,适当的提示技术使大型语言模型(LLM)能够解决人工构图概括任务,例如扫描。在这项工作中,我们在更现实的语义解析任务中确定了更大的词汇,并完善这些提示技术来解决这些挑战。我们的最佳方法是基于最小的提示:它使用基于提示的句法解析分解问题,然后使用此分解来选择适当的示例并顺序生成语义分析。这种方法使我们能够为CFQ设置新的最新技术,同时仅需要传统方法使用的培训数据的1%。由于我们的方法的一般性,我们希望类似的努力将在其他任务和领域中带来新的结果,尤其是对于知识密集型应用程序。
translated by 谷歌翻译
学习曲线将学习算法的预期误差绘制为标记输入样本数量的函数。它们被机器学习实践者广泛使用,以衡量算法的性能,但是经典的PAC学习理论无法解释其行为。在本文中,我们介绍了一种称为VCL维度的新组合表征,该表征改进并完善了Bousquet等人的最新结果。 (2021)。我们的表征通过提供细粒度的边界来展示学习曲线的结构,并表明对于有限VCL的类,可以将衰减的速率分解为仅取决于假设类别和指数成分的线性组件,该成分是指数的成分。还取决于目标分布。特别是,VCL维度的细微差别意味着比Bousquet等人的边界更强大的下限。 (2021年),比经典的“无免费午餐”下界强。 VCL表征解决了Antos and Lugosi(1998)研究的一个开放问题,他们询问在哪些情况下存在这种下限。作为推论,我们在$ \ mathbb {r}^d $中恢复了其下限,并以原则性的方式也适用于其他情况。最后,为了对我们的工作以及与传统PAC学习界的比较提供另一个观点,我们还以一种更接近PAC环境的语言展示了结果的替代表述。
translated by 谷歌翻译
训练数据的量是决定学习算法的概括能力的关键因素之一。直观地,人们期望随着训练数据的增加,错误率将降低。也许令人惊讶的是,自然尝试正式化这种直觉引起了有趣且具有挑战性的数学问题。例如,在他们关于模式识别的古典书籍中,Devroye,Gyorfi和Lugosi(1996)询问是否存在{单调}贝叶斯一致的算法。这个问题一直开放25年以上,直到最近Pestov(2021)使用单调贝叶斯一致算法的复杂构造解决了该问题进行二进制分类。我们得出了多类分类的一般结果,表明每个学习算法A都可以转换为具有相似性能的单调。此外,转换是有效的,仅使用黑盒甲骨文访问A。 Loog(2019),Viering and Loog(2021)和Mhammedi(2021)。我们的转换很容易意味着在各种情况下单调学习者:例如,它将Pestov的结果扩展到具有任意数量的标签的分类任务。这与针对二进制分类量身定制的Pestov的工作形成鲜明对比。另外,我们在单调算法的误差上提供统一的边界。这使我们的转换适用于无分销设置。例如,在PAC学习中,这意味着每个可学习的课程都接受单调PAC学习者。这通过Viering,Mey和Loog(2019)解决了问题; Viering and Loog(2021); Mhammedi(2021)。
translated by 谷歌翻译
Recent advances in generative modeling have led to an increased interest in the study of statistical divergences as means of model comparison. Commonly used evaluation methods, such as the Fréchet Inception Distance (FID), correlate well with the perceived quality of samples and are sensitive to mode dropping. However, these metrics are unable to distinguish between different failure cases since they only yield one-dimensional scores. We propose a novel definition of precision and recall for distributions which disentangles the divergence into two separate dimensions. The proposed notion is intuitive, retains desirable properties, and naturally leads to an efficient algorithm that can be used to evaluate generative models. We relate this notion to total variation as well as to recent evaluation metrics such as Inception Score and FID. To demonstrate the practical utility of the proposed approach we perform an empirical study on several variants of Generative Adversarial Networks and Variational Autoencoders. In an extensive set of experiments we show that the proposed metric is able to disentangle the quality of generated samples from the coverage of the target distribution.
translated by 谷歌翻译
This report summarizes the work carried out by the authors during the Twelfth Montreal Industrial Problem Solving Workshop, held at Universit\'e de Montr\'eal in August 2022. The team tackled a problem submitted by CBC/Radio-Canada on the theme of Automatic Text Simplification (ATS).
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Scene understanding is a major challenge of today's computer vision. Center to this task is image segmentation, since scenes are often provided as a set of pictures. Nowadays, many such datasets also provide 3D geometry information given as a 3D point cloud acquired by a laser scanner or a depth camera. To exploit this geometric information, many current approaches rely on both a 2D loss and 3D loss, requiring not only 2D per pixel labels but also 3D per point labels. However obtaining a 3D groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D geometric information without requiring any 3D groundtruth, by training the geometric feature extraction with a 2D segmentation loss in an end-to-end fashion. Our method starts by extracting a map of 3D features directly from the point cloud by using a lightweight and simple 3D encoder neural network. The 3D feature map is then used as an additional input to a classical image segmentation network. During training, the 3D features extraction is optimized for the segmentation task by back-propagation through the entire pipeline. Our method exhibits state-of-the-art performance with much lighter input dataset requirements, since no 3D groundtruth is required.
translated by 谷歌翻译
An eco-system of agents each having their own policy with some, but limited, generalizability has proven to be a reliable approach to increase generalization across procedurally generated environments. In such an approach, new agents are regularly added to the eco-system when encountering a new environment that is outside of the scope of the eco-system. The speed of adaptation and general effectiveness of the eco-system approach highly depends on the initialization of new agents. In this paper we propose different techniques for such initialization and study their impact. We then rework the ecosystem setup to use forked agents which brings better results than the initial eco-system approach with a drastically reduced number of training cycles.
translated by 谷歌翻译